Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds

نویسنده

  • Jeff Weeks
چکیده

Observational data hint at a finite universe, with spherical manifolds such as the Poincaré dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincaré dodecahedral space S3/I∗, the binary octahedral space S3/O∗, the binary tetrahedral space S3/T ∗, the prism manifolds S3/D∗ m and the lens spaces L(p, 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenmodes of Lens and Prism Spaces

Cosmologists are taking a renewed interest in multiconnected spherical 3-manifolds (spherical spaceforms) as possible models for the physical universe. To understand the formation of large scale structures in such a universe, cosmologists express physical quantities, such as density fluctuations in the primordial plasma, as linear combinations of the eigenmodes of the Laplacian, which can then ...

متن کامل

Platonic polyhedra tune the 3 - sphere : III . Harmonic analysis on octahedral spherical 3 - manifolds

We view a spherical topological 3-manifold M, see [11] and [13], as a prototile on its cover M̃ = S. We studied in [7] the isometric actions of O(4, R) on the 3sphere S and gave its basis as well-known homogeneous Wigner polynomials in [5] eq.(37). An algorithm due to Everitt in [3] generates the homotopies for all spherical 3-manifolds M from five Platonic polyhedra. Using intermediate Coxeter ...

متن کامل

On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms

Spherical t-designs are point sets XM := {x1, . . . ,xM} ⊂ S2 which provide quadrature rules with equal weights for the sphere which are exact for polynomials up to degree t. In this paper we consider the problem of finding numerical spherical t-designs on the sphere S2 for high polynomial degree t ∈ N. That is, we compute numerically local minimizers of a certain quadrature error At(XM ). The ...

متن کامل

ar X iv : m at h / 04 02 28 2 v 2 [ m at h . D G ] 5 A pr 2 00 4 COMPLETE CURVATURE HOMOGENEOUS PSEUDO - RIEMANNIAN MANIFOLDS

We exhibit 3 families of complete curvature homogeneous pseudo-Riemannian manifolds which are modeled on irreducible symmetric spaces and which are not locally homogeneous. All of the manifolds have nilpotent Jacobi operators; some of the manifolds are, in addition, Jordan Osserman and Jordan Ivanov-Petrova.

متن کامل

Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds

In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentzian 3-manifolds with n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008